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What Proof has been in History?

The concept of mathematical proof has undergone 

significant changes.

 The Greek concept of apodictic proof, as exemplified by 

geometrical demonstration in Euclid’s Elements.

 Analytic proof (17th-18th c.) became the major characteristic of the 

European mathematical tradition. 

 At the beginning of 20th century, the foundational crisis led to the 

fundamental distinction between the classical and the constructive
concepts of mathematical proof and the elaboration of different 

systems of mathematics (with different associated logical semantics) 

that make use of either the one or the other concept of formal
proof.
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Proof as Process

Joseph Goguen (1941-2006), proposed the concept of proof-event, 

designed to cover all particular exemplifications of proof: 

apodictic, dialectical, constructive, non-constructive proof, as well 

as proof steps and computer proofs, incomplete proofs and 

conjectures.

This concept proved more adequate to study questions of the 

process of mathematical discovery and demonstration, including 

the history and the communicative characteristics of the 

mathematical proving activity, and the role of mathematical 

communities in the ultimate validation of mathematical proofs.



4

Goguen’s concept of Proof Events

“Mathematicians talk of ‘proofs’ as real things. 

But the only things that can actually happen in 

the real world are proof-events, or provings, 

which are actual experiences, each occurring at a 

particular time and place, and involving 

particular people, who have particular skills as 

members of an appropriate mathematical 

community. …



5

Goguen’s concept of Proof Events

A proof-event minimally involves a person having the 

relevant background and interest, and some mediating 

physical objects, such as spoken words, gestures, hand 

written formulae, 3D models, printed words, diagrams, or 

formulae (we exclude private, purely mental proof-

events…). None of these mediating signs can be a “proof” 

in itself, because it must be interpreted in order to come 

alive as a proof-event; we will call them proof objects. Proof 

interpretation often requires constructing intermediate 

proof objects and/or clarifying or correcting existing proof 

objects. The minimal case of a single prover is perhaps the 

most common, but it is difficult to study, and moreover, 

groups of two or more provers discussing proofs are 

surprisingly common)” 
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Proof-events as activity of 
a multi-agent system 

We described proof-events as activity of a multi-agent 
system (of agents enacting roles of prover or interpreter, 
possibly interchangeably) incorporating their history, insofar 

as they form sequences of proof-events evolving in time.

Thus, certain temporal aspects of proof-events are modelled 

using the language of the calculus of events developed in 

Kowalski’s calculus of events.
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Proof-events as activity of 
a multi-agent system 

Using the language of event calculus, we can speak about 

proof-events and their sequences. The calculus of proof-
events requires a many-sorted predicate logic with equality, 

with sorts for

 Individual physical objects (humans, chairs, tables, etc.).

 Real numbers, to represent (chronological) time and 

variable quantities.

 Time-dependent properties, such as states and activities.

 Time-independent propositions, called problems 

(specified by certain (time-dependent) conditions).
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Proof-events as activity of 
a multi-agent system 

 Variable quantities.

 Types of proof-events, whose instantiations mark the 

beginning and end of time-dependent properties.

The fundamental concepts are the proof-events and the 

fluents.



9

Proof-events as activity of 
a multi-agent system 

Proof-events e take place in space and time (proving 

instances/ occurrences); they refer to a fixed problem 

(proposition), specified by certain conditions (predicates). A 

proof-event e has the following internal structure:

which means that an intention (insight or idea or proof 

sketch, or mathematical argument, etc.) is linguistically 

articulated for a (time-independent) problem (formulated in 

the form of a mathematical proposition, specified by certain 

conditions) at time t, which conventionally denotes the time 

that the communication (presentation) has been completed. 

( , ),e present Intention Problem t
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Proof-events as activity of 
a multi-agent system 

In this case, we say that the presented output (semiotic 

“text”) is an exemplification or an instance of a proof-event 

with respect to the particular fixed problem.

Fluents f are sequences of proof-events (proving instances)

evolving in time that refer to a fixed problem.

A fluent is a function that may be interpreted in a model as 

a set of time points 

conventionally denoting the time when the communication 

output is available.

1,2,3,
{ }
n n
e
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t
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Extension of Proof-events Calculus

We extend the calculus of proof-events by integrating 

argumentation theory (Toulmin’s model, Pollock’s concept of 

defeasible reasoning) to represent the relevant stages of a 

discovery proof-event (incomplete or even false proofs, 

ideas, valid or invalid inference steps, comments, etc.) in a 

form of dialogue of agents (enacting roles of prover or 

interpreter, respectively) that use arguments and counterarguments

or counterexamples in their attempt to clarify the validity of 

a purported proof.
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Proof-events vs. arguments

Arguments and proof-events have three common 

characteristics: 

 a set of premises for a task or problem, 

 a method of reasoning, and 

 a conclusion.

Proof-events presuppose the existence of at least two agents 

enacting the roles of prover or interpreter. Similarly, 

argumentation involves (at least two) agents enacting the 

roles of supporter or opponent.

The layers of communication, understanding, interpretation, 

and validation that agents use to disseminate their 

knowledge, are common in both approaches.
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Argumentation models

Argumentation models generally contain the following main 

elements: 

an underlying logical language with the definition of the 

concepts of argument, conflict between arguments and 

counterarguments, and status of argument.

Assuming a multi-agent system, where the agents enact the 

roles of provers and interpreters, A proof-event е can be 

understood as a communicated argument 

concerning a stated (fixed) problem specified by certain 

conditions (predicates) and be designated by the pair

i.e., 

,c

,e c
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Argumentation models
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Argumentation models
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Argument moves

Arguments can be specified as lines of reasons leading to a conclusion 

with consideration of possible counterarguments at each step.

With the explicit construction of the line of reasoning (a chain 

where the argument xi attacks the argument xi−1 for i > 0) distinct 

notions of defeat can be conceptualized.

When an agent is in control of the argument, it must select which 

argument move to apply. We reserve the term “argument moves” for 

specific, active tactics that a prover can use to support his claim, 

relations that indicate links and conflicts at the sequence of proof 

events.

0 1 2
, ,

n
x x x x
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Argument moves

Given a claim c and an argument communicated during the proof-event 

e, possible argument moves, which provide support for c include:

 Equivalence: an argument for a claim which is equivalent to (or is) 

c;

 Elaboration: an argument for an elaboration of c, and

Argument moves which oppose c include:

 Rebutting: an argument for a claim which disagrees with c;

 Undercutting: an argument for a claim which disagrees with a 

premise of c.
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Argument moves
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Argument moves
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Temporal Predicates
We apply the abovementioned operators combined with the basic 

temporal predicates from the calculus of proof-events.



21

Temporal Predicates

ሿ𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠(𝑒1, 𝑓, 𝑡1) ⇌ ∃𝑒, 𝑒∗, 𝑡1([𝑎𝑡𝑡𝑎𝑐𝑘(𝑒
∗, 𝑡1) → ¬𝑐𝑜𝑛𝑐(𝑒) ∪ ¬𝑝𝑟𝑒𝑚(𝑒)

∩ [∄𝑒2, 𝑡2(𝐻𝑎𝑝𝑝𝑒𝑛𝑠(𝑒2, 𝑡2) → ¬𝑎𝑡𝑡𝑎𝑐𝑘(𝑒∗, 𝑡1))ሿ, 𝑓𝑜𝑟 𝑡1 < 𝑡2
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Temporal Predicates
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Levels of argumentation

Following Kakkas and Moraitis, we present three levels of 

arguments:

 Object level arguments represent the possible 

decisions or actions in a specific domain.

 First-level priority arguments express justifications on 

the object-level arguments in order to resolve possible 

conflicts.

 Higher-order priority arguments are used to deal with 

potential conflicts between priority arguments of the 

previous level until all conflicts are resolved.
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Levels of argumentation

We can apply the same levels in mathematical proving.

 The data and the claim of the initial proof-events 

constitute the object-level arguments.

 Proof-events constitute the first-level priority 

arguments, in which we have preferences and 

justifications in the object-level arguments.

 The proof events that have fulfilled their purpose 

terminate, while the rest of them continues to the 

higher-order priority arguments. As proof events 

continue from lower levels to higher, they constitute 

fluents.
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Object level arguments

In the object level arguments, we have our claim and the 

initial representations of arguments. The proof-events that 

are not attacked constitute the fluent f0 and continue to the 

first level priority arguments.
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First-level priority arguments

so that the proof-events that have been attacked and could 

not resolve the con-flict, terminate in this fluent.
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First-level priority arguments

The rest of them remain active, so we have:

and continues to the second-level priority arguments.
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Higher-order priority arguments

If proof-events fail to resolve all the conflicts, our claim 

cannot be proved and it clips:

If the proof-events manage to deal with all the attacks and

then our claim is proved valid.
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A Case Study: 
Fermat’s Last Theorem

Initiation of proof-event: Pierre de Fermat posed the 

following problem in 1637 

There are no three distinct positive integers a, b, and c other than 

zero that can satisfy the equation an+bn=cn, if n is an integer greater 

than two (n > 2). 

 Fermat claimed to have proved this theorem 

(uncommunicated proof, therefore it is not a proof-

event).

 Leonhard Euler gave a proof of n = 3.

 Exponents n=5, 7, 6, 10, 14 were also proved. 
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A Case Study: 
Fermat’s Last Theorem

 Gabriel Lamé claimed incorrectly that complex numbers 

can be factored into primes uniquely. 

 This gap was indicated by Joseph Liouville. 

 ………………………………………………

 The Taniyama–Shimura-Weil conjecture was the method 

that led to a successful proof of Fermat's Last Theorem.

 Andrew Wiles accomplished a partial proof of this 

conjecture.

 There was an incorrect critical point in the proof.
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A Case Study: 
Fermat’s Last Theorem

 When Wiles was on the verge to quit his attempt, he had 

an insight that the Kolyvagin–Flach approach and 

Iwasawa theory were each insufficient on their own, but 

combined they could be strong enough to overcome this 

final barrier.

 Termination of the sequence of proof-events. In 

1994, Wiles submitted two papers that established the 

modularity theorem for the case of semistable elliptic 

curves which was the last step in proving Fermat’s Last 

Theorem.
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A Case Study: 
Fermat’s Last Theorem

The participation of the agents involved in this sequence of 

proof-events has the following manifestations:

1. By suggesting partial proofs (for specific cases) of the 

Theorem.

2. By the rejection of someone else’s attempt, pointing out 

a fault and/or inaccuracy.

3. Through a dialogue between provers in order to detect 

and resolve weak or insufficiently supported arguments 

in proving (for instance, Wiles asked his colleagues’ 

contribution, notably Nick Katz and Richard Taylor, 

when he faced a dead-end in his attempt).
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A Case Study: 
Fermat’s Last Theorem

Arguments and counterarguments played a significant role 

in proving:

 Argumentation is crucial, as it lets counterarguments to 

be set forth and stronger arguments to survive. 

 Both arguments and counterarguments play contribute 

equally in the construction and justification of the proof. 

 The warranted parts of the proofs act as groundwork for 

the subsequent proofs, while the counterarguments that 

identify faults in unsuccessful proofs open the way for 

better-justified proofs and, in some cases, turn the 

interest of the mathematical community on new 

unexplored areas.
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A Model of FLT proving in terms 
of the Levels of Argumentation
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A Model of FLT proving in terms 
of the Levels of Argumentation
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A Model of FLT proving in terms 
of the Levels of Argumentation
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A Model of FLT proving in terms 
of the Levels of Argumentation
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A Model of FLT proving in terms 
of the Levels of Argumentation
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A Model of FLT proving in terms 
of the Levels of Argumentation
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A Model of FLT proving in terms 
of the Levels of Argumentation
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A Model of FLT proving in terms 
of the Levels of Argumentation
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A Model of FLT proving in terms 
of the Levels of Argumentation



43

End of the Proof-event

Thank you for your attention


