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What Proof has been in History?

The concept of mathematical proof has undergone
significant changes.

O The Greek concept of apodictic proof, as exemplified by
geometrical demonstration in Euclid’s Elements.

O Analytic proof (177-18% c.) became the major characteristic of the
European mathematical tradition.

O At the beginning of 20t century, the foundational crisis led to the
fundamental distinction between the classical and the constructive
concepts of mathematical proof and the elaboration of different
systems of mathematics (with different associated logical semantics)
that make use of either the one or the other concept of formal
proof.



Proof as Process

Joseph Goguen (1941-20006), proposed the concept of proof-event,
designed to cover all particular exemplifications of proof:
apodictic, dialectical, constructive, non-constructive proof, as well
as proof steps and computer proofs, incomplete proofs and
conjectures.

This concept proved more adequate to study questions of the
process of mathematical discovery and demonstration, including
the history and the communicative characteristics of the
mathematical proving activity, and the role of mathematical
communities in the ultimate validation of mathematical proofs.



Goguen’s concept of Proof Events

“Mathematicians talk of ‘proofs’ as real things.
But the only things that can actually happen in

the real world are proof-events, or provings,
which are actual experiences, each occurring at a
particular time and place, and involving

particular people, who have particular skills as
members of an appropriate mathematical
community. ...



Goguen'’s concept of Proof Events

A proof-event minimally involves a person having the
relevant background and interest, and some mediating
physical objects, such as spoken words, gestures, hand

written formulae, 3D models, printed words, diagrams, or
formulae (we exclude private, purely mental proof-

events...). None of these mediating signs can be a “proof”
in itself, because it must be interpreted in order to come
alive as a proof-event; we will call them proof objects. Proot
interpretation often requires constructing intermediate
proof objects and/or clarifying or correcting existing proof
objects. The minimal case of a single prover is perhaps the
most common, but it is difficult to study, and moreover,
groups of two or more provers discussing proofs are
surprisingly common)”



Proof-events as activity of
a multi-agent system

We described proof-events as activity of a multi-agent
system (of agents enacting roles of prover or interpreter,
possibly interchangeably) incorporating their history, insofar
as they form sequences of proof-events evolving in time.

Thus, certain temporal aspects of proof-events are modelled
using the language of the calculus of events developed in
Kowalsk?’s calculus of events.



Proof-events as activity of
a multi-agent system

Using the language of event calculus, we can speak about
proof-events and their sequences. The calculus of proof-
events requires a many-sorted predicate logic with equality,
with sorts for

O Individual physical objects (humans, chairs, tables, etc.).

O Real numbers, to represent (chronological) time and
variable quantities.

O Time-dependent properties, such as states and activities.

O Time-independent propositions, called problems
(specitfied by certain (time-dependent) conditions).



Proof-events as activity of
a multi-agent system

O Variable quantities.

O Types of proof-events, whose instantiations mark the
beginning and end of time-dependent properties.

The fundamental concepts are the proof-events and the
fluents.



Proof-events as activity of
a multi-agent system

Proof-events ¢ take place in space and time (proving
instances/ occurrences); they refer to a fixed problem
(proposition), specified by certain conditions (predicates). A
proof-event ¢ has the following internal structure:

e = (present(Intention, Problem),t)

which means that an intention (insight or idea or proof
sketch, or mathematical argument, etc.) is linguistically
articulated for a (time-independent) problem (formulated in
the form of a mathematical proposition, specified by certain
conditions) at time £, which conventionally denotes the time
that the communication (presentation) has been completed.



Proof-events as activity of
a multi-agent system

In this case, we say that the presented output (semiotic
“text”) 1s an exemplification or an instance of a proof-event
with respect to the particular fixed problem.

Fluents fare sequences of proof-events (proving instances)
{en }n:1,2,3,...
evolving in time that refer to a fixed problem.

A fluent 1s a function that may be interpreted in a model as
a set of time points

{tn }n:1,2,3,...

conventionally denoting the time when the communication
output 1s available.
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Extension of Proof-events Calculus

We extend the calculus of proof-events by integrating
argumentation theory (Toulmin’s model, Pollock’s concept of
defeasible reasoning) to represent the relevant stages of a
discovery proof-event (incomplete or even false proofs,
ideas, valid or invalid inference steps, comments, etc.) in a
form of dialogue ot agents (enacting roles of prover or
interpreter, respectively) that use arguments and counterarguments
or counterexamples in their attempt to clarify the validity of
a purported proof.
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Proof-events vs. arguments

Arguments and proof-events have three common
characteristics:

O a set of premises for a task or problem,

O a method of reasoning, and

O a conclusion.

Proof-events presuppose the existence of at least two agents
enacting the roles of prover or interpreter. Similarly,
argumentation involves (at least two) agents enacting the
roles of supporter or opponent.

The layers of communication, understanding, interpretation,
and validation that agents use to disseminate their
knowledge, are common in both approaches.
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Argumentation models

Argumentation models generally contain the following main
elements:

an underlying logical language with the definition of the
concepts of argument, conflict between arguments and
counterarguments, and status of argument.

Assuming a multi-agent system, where the agents enact the
roles of provers and interpreters, A proof-event e can be
understood as a communicated argument (®,¢)

concerning a stated (fixed) problem specified by certain
conditions (predicates) and be designated by the pair e(®,c)

1e.,
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Argumentation models

e(P, c) =~ e{communicate(Problem, t)), (communicate(®,c)), w >
where @ 1s the Data of the argument, ¢ 1s the Claim that refers to a stated (fixed) problem
(proposition), specified by certain conditions (predicates) and ware the (possibly mmplicit)
inference rules (Warrant) which allow @ to be logically associated with ¢, such that:
1 D¥FL
(1) Pre
(iii) Thereisno ®' C @, such that ' I ¢.

A counterargument to a proof-event e(®, c) represents a new proof-event that can be

designated by the pair ¢" (W, 3) . where ¥ is the Data (generally different from those of

®) on which is based the Claim (Counterargument) / that refers to the same fixed prob-
lem (proposition) stated at tume 7, specified by the same conditions (predicates).
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Argumentation models

Argumentation may require chams (or trees) of reasoning, where claims are used in
the assumptions for obtaining further claims [8], so that a proof-event could be an atomic
argument or a sequence of arguments (fluent). Fluents f are sequences of proof-events
(proving instances) evolving in time that refer to a fixed problem, specified by certain
conditions Let R be a set of rules of inference. A fluent f1is a formula of the form

€,€,,6, — €
where €(P,,c ) ¢,(D,,¢c,), €, (P,,c,) is a finite, possibly empty, sequence of argu-
ments, such that the conclusion of proof-event e is the claim c_, 1.e.

conc(e, ) = ¢,, conc(e,) = ¢,, conc(e,) = ¢,

for some rule €,CyyCy — CE R
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Argument moves

Arguments can be specified as lines of reasons leading to a conclusion
with consideration of possible counterarguments at each step.

With the explicit construction of the line of reasoning (a chain

AR A

where the argument x; attacks the argument x,_, for 7 > 0) distinct
notions of defeat can be conceptualized.

When an agent is in control of the argument, it must select which
argument move to apply. We reserve the term “argument moves” for
spectfic, active tactics that a prover can use to support his claim,
relations that indicate links and conflicts at the sequence of proof
events.
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Argument moves

Given a claim ¢ and an argument communicated during the proof-event
¢, possible argument moves, which provide support for ¢ include:

O Equivalence: an argument for a claim which 1s equivalent to (or 1s)
2

O Elaboration: an argument for an elaboration of ¢, and

Argument moves which oppose ¢ include:
O Rebutting: an argument for a claim which disagrees with ¢

O Undercutting: an argument for a claim which disagrees with a
premise of ¢.
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Argument moves

Argument moves that support a claim. A proof-event e 1S equivalent with proot-

event e,, if = ®', ¢= ¢, although it might be w = ', i.e., whenever they have

the same data and the same conclusion (although possibly different warrants), 1.e.
Equivalence(e,e’) = e(®,c) = €'(¥’, /).

Therefore, equivalent proof-events can have different ways of proving
If e{®,c) 1sa proof-event, a set of sentences S is called that elaborates or embellishes

upon e, if the following relation holds
Elaboration(e, S) = sent(e) N sent(S) — concl(e) iff PUS ¢
These moves are used for backing our claim and supporting our proof, so that

Support(e, t) = Equivalent(e,e’) U Elaboration(e, S)

18



Argument moves

Counterargument moves that attack a claim. A counterargument communicated
during the proof-event € (W, 3) attacks or rebuts the conclusion of an argument com-
municated during the proof-event e(®, ¢), if the following relation holds

Rebutting(e”, €) = rebut(e",e) — —concl(e) iff = 3 — —c¢

A counterargument communicated during the proof-event ¢ (W, 3) is called that un-

dercuts or attacks some of the premises (defeasible inference) of the argument commu-
nicated during the proof-event e(®.¢). if the following relation holds

Undercutting(e*,e) = undercut(e’,e) — —prem(e) iff - 3 _'I(ﬂ D,

for {{I}l,@?,...@n} C P,
Given an argument communicated during the proof-event ¢(®,c), a counterargu-
ment communicated during the proof-event e" (W, 3) attacks the argument communi-

cated during the proof-event e, at time 7, iff ¢* rebuts e or ¢* undercuts e. In symbols,

Attack(e",t) = rebut(e”,e) U undercut(e”,e)



Temporal Predicates

We apply the abovementioned operators combined with the basic
temporal predicates from the caleulus of proof-events.

Happens(e,t) means that a proof-event e occurs at time 7.

Initiates(e, f,t) = Happens(e,t ) — —attack(e .t ) U support(e,t,) , at time ¢,

which means that if a proof-event e occurs at time 7, then there are no counterarguments
that attack the validity of the outcome of the proof-event and there 1s adequate support

for our claim at the specific time .

Clipped(t,. f,t,) = 3e e .t t{Happens(e t,).(t, <t <t,)Nattack(e, )]
N[Ae,,t,(Happens(e,,t,) — —attack(e; ,t))], for t, <t <,

which means that a proof-event clips when there is no proof-event ¢, that attacks the

W

counterargument e,

attacking the proof-event e, between ¢ and ¢, .
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Temporal Predicates

Terminates(eq, f,t1) = e, e*, t;([attack(e*, t;) = —conc(e) U ~prem(e)]
N [Ae,, t,(Happens(e,, t,) = —attack(e”, t1))], fort; <t,

which means that a fluent terminates when there 1s a counterargument attacking our
sequence and there 1s no proof-event ¢, that happens m time 7, , with ¢ < ¢, to defend
our claim. The termination of a sequence of proof-events may be caused by the proof

of the falsity of the problem (there are counter-arguments that attack the conclusion of

the proof-event), or the undecidability of the problem (there 1s a lack of adequate war-
rants to prove the desideratum).
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Temporal Predicates

T T+l

ActiveAt(e, f,t ) = Happens(t.e .t )— —attack(e .t )U
support(e, .t ), for every n € Nt >t

which means that a fluent is active, if there is an argument to support our claim for every coun-
terargument attackmg our claim. This means that for every counterargument e"(V_ 5 ),

i=1...nn €N thereisaproof-event e (P _, . .c_ ,).which Happens(e_ .t ) and

defeats the attack of the counterargument ¢ (¥ .3 ), for¢ = >1¢ .
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Levels of argumentation

Following Kakkas and Moraitis, we present three levels of
arguments:

O Object level arguments represent the possible
decisions or actions in a specific domain.

O First-level priority arguments express justitications on
the object-level arguments in order to resolve possible
conflicts.

O Higher-order priority arguments are used to deal with
potential conflicts between priority arguments of the
previous level until all conflicts are resolved.
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Levels of argumentation

We can apply the same levels in mathematical proving.

O The data and the claim of the initial proof-events
constitute the object-level arguments.

O Proof-events constitute the first-level priority
arguments, in which we have preferences and
justifications in the object-level arguments.

O 'The proof events that have fulfilled their purpose
terminate, while the rest of them continues to the
higher-order priority arguments. As proof events
continue from lower levels to higher, they constitute

fluents.
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Object level arguments

In the object level arguments, we have our claim and the
initial representations of arguments. The proot-events that
are not attacked constitute the fluent £, and continue to the
first level priority arguments.

Happens(e,t ), i =1...m meNt <t <t

Ve [Happens(e .t) — —attack(e ,t. )N (¢, <t )] — Initiates(e,, f .t )

for i=1...mmeN ¢t <t <t.
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First-level priority arguments

Initiates(e . f.t ), attacks(e, ., f.t ..).
i=1...m m eN{ <t <t

1+ 1 T Um+l — TmEm

for every 7 € N that we have

de ...e .t [attack(e ..t ) — ﬁcan-c(e ) U—prem(e )]
ﬁﬁprem(e JIN(t .. i < t)

ﬁ[ﬂﬁ m+it+17 m+i— (H{IPPE”S(E m+i+1’ m+s—1)
— —attack(e, .t )| — Terminates(e . f.t . )]
1

so that the proof-events that have been attacked and could
not resolve the con-flict, terminate in this fluent.
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First-level priority arguments

The rest of them remain active, so we have:
ActiveAt(e e Jﬁ,tm_ml) for every j =i €N

and continues to the second-level priority arguments.
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Higher-order priority arguments

It proot-events fail to resolve all the conflicts, our claim
cannot be proved and it clips:

Clipped(t .e,t ) atthe time ¢ =¢ { >t

m{n—1+mn — i

If the proof-events manage to deal with all the attacks and

dj,5 € N|ActwweAt(e,,, ... [,,t,) N~ Terminates(e, f,,t,)]
— Valid(e,t ),at the time f = t >t

n—1)+mn — i

then our claim 1s proved valid.
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A Case Study:
Fermat's Last Theorem

Initiation of proof-event: Pierre de Fermat posed the
following problem in 1637

There are no three distinct positive integers «, 4, and ¢ other than
zero that can satisfy the equation &"+0"=/", it # 1s an integer greater
than two (» > 2).

O Fermat claimed to have proved this theorem
(uncommunicated proof, therefore it is not a proof-
event).

O Leonhard Euler gave a proof of 7 = 3.
O Exponents #=5,7, 6, 10, 14 were also proved.
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A Case Study:
Fermat's Last Theorem

O

Gabriel Lamé claimed incorrectly that complex numbers
can be factored into primes uniquely.

This gap was indicated by Joseph Liouville.

The Taniyama—Shimura-Weil conjecture was the method
that led to a successful proof of Fermat's Last Theorem.

Andrew Wiles accomplished a partial proof of this

conjecture.

There was an incorrect critical point in the proof.
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A Case Study:
Fermat's Last Theorem

O When Wiles was on the verge to quit his attempt, he had
an insight that the Kolyvagin—Flach approach and
Iwasawa theory were each insufficient on their own, but
combined they could be strong enough to overcome this
final barrier.

O Termination of the sequence of proof-events. In
1994, Wiles submitted two papers that established the
modularity theorem for the case of semistable elliptic
curves which was the last step in proving Fermat’s Last
Theorem.
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A Case Study:
Fermat's Last Theorem

The participation of the agents involved in this sequence of
proof—events has the following manifestations:

1. By suggesting partial proofs (for specific cases) of the
Theorem.

2. By the rejection of someone else’s attempt, pointing out
a fault and/or inaccuracy.

3. 'Through a dialogue between provers in order to detect
and resolve weak or insufficiently supported arguments
in proving (for instance, Wiles asked his colleagues’
contribution, notably Nick Katz and Richard Taylor,
when he faced a dead-end in his attempt).
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A Case Study:
Fermat's Last Theorem

Arguments and counterarguments played a significant role

in proving:

O Argumentation 1s crucial; as it lets counterarguments to
be set forth and stronger arguments to survive.

O Both arguments and counterarguments play contribute
equally in the construction and justification of the proof.

O The warranted parts of the proofs act as groundwork for
the subsequent proofs, while the counterarguments that
identify faults in unsuccesstul proofs open the way for
better-justified proofs and, in some cases, turn the
interest of the mathematical community on new
unexplored areas.
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A Model of FLT proving in terms
of the Levels of Argumentation

Object level arguments — Fermat’s Conjecture

In the object level arguments, we have Fermat’s conjecture as the initial proof-event

€ and his claim that he has a proving for this conjecture, without any claim-coun-

Fermat

terargument e, clearly opposes this conjecture.

N —attack(e,

rermat > Liesr ) — INitiates(e

Fmt’ig’tlﬁﬂ)

Happens(e

Fermat’ 1637 )
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A Model of FLT proving in terms
of the Levels of Argumentation

First-level priority arguments - Proofs for specific exponents

In the first-level priority arguments, we have proofs for specific exponents » of the FLT
from various mathematicians in different time points.

For the exponent n = 3, the proof-event e _, happened when Leonhard Euler gave

a proof in 1755. Therefore, we have Happens(e_, .t__).

Buler’® 1755
Many other well-known mathematicians followed with equivalent proofs that sup-
port the validity of the proof for n = 3. Each prover used a different way (warrant) for
proving the conclusion. Thus, their provings are equivalent.

Support(e _,.t.) — Equivallent(e _,.e.) for ; =1,...,14, with

i=1:(eg, 1?0?) i=2: (egﬂmﬁtlm), i=3: (eLegsndre’tISQS)’

i =4 (Copoans® tmaa)* i=5: (eLamé’tISB&) 1= 6" (Cyper tmoz)’

0 =T (Coppmer-ligzs) > = 87 (Cpmpion>Tron) » 1= 9 (Cxrey Trooo)
=10 (€qpeue-tronn)» = 117 (€g oo tioro) - 1= 127 (€pprrinacts Liors) -
1 =13 (Epertion) > 1= 147 (e tigus)-
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A Model of FLT proving in terms
of the Levels of Argumentation

From the aforementioned, we have

€ puier- binss ) (1 Initiates(e o, fi 1)
N[—attack(e_,,t,)U support( LNt <t)
— ActiveAt(e_,, f.t), fort < t

1766

Happens(e

Similarly, we have proofs for n=5 (¢ _.) and n =7 (e_,) by various mathema-
ticians (provers). The first proof for n = 5 belongs to Legendre (1825). Accordingly,

we have Happens(e ). Equivalent proofs were also proposed.

€ Legenare” bg0s
Support(e,_..t ) — Equivalent(e,__.c ) for 1 =1,...,10, with

j =1: (ELEQEMTE’tISEE) ? j = 2! (Eﬂmchief’tlﬂﬂa)’ j =3 (Eﬂaws’tlﬂ?'ﬁ) ’

j: 4. (ELEEJE?‘QUE’tIS:;S) J =5 ( Lﬂm.é thT)’ J: 6: (Eﬂambﬂioi’fé’tlml)""

J= [ (ew'mmﬂw’tma) , J=8: (ERycfaM’tlgﬂl)’ J=9: (Eﬂbmut’tllﬁﬁ)

j=10: (e

Terjanian’ tl Qa7 ) :

36



A Model of FLT proving in terms
of the Levels of Argumentation

From the aforementioned, we have

Happens(e,, .- tass ) 1 Initiates(e, o, f tig0) N
[—attack(e] _,t)U Su.ppocr't(en_s,tw%)] Nt <t)
— ActweAt(e _ f.t) fort <t

For n = 7. the first proof was provided by Lame in 1839; therefore, we have
Happens(e, .t _..) and the equivalent supporting provings

Lamé® "1839

Support(e_ .t ) — Equivalent(e _..c ) for k=1,...,10, with
k=1: (e k=2 (e k=3:(c. .t ).

Lamé’ 1889) Leberguet 1840) G‘emccm 1876

k= 4 (E\»Iama lBQT)

Therefore, we have

Happens(e, .t . )0 Initiates(e . f.t )N
(—attack(e’ __.t.)U support(e e M (E s < T.)
— ActiveAt(e . f.t), for ¢, <t.

FLT was also proved for the exponents n = 6,10,14.
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A Model of FLT proving in terms
of the Levels of Argumentation

Second-level priority arguments — Even exponents

Sophie Germain (e, ) tried unsuccessfully to prove FLT for all even exponents

) mn 1977. Germain’s attempt

anian

(e, ,,). which was proved by Guy Terjanian (e,
was incomplete; thus, it clipped
thpgd(tl 7767 n. 2p7 tlS:S]) A EleGsmmm ez?emmm I[HappenS(EGsmmm l) M
(t. <t <t )Nattack(e, _ .t)|N
[fle,.t,(Happens(e,,t,) — —attack(el, . t))], fort <t <t .
and became active again after the successful proving of Terjanian in 1977.

ActiveAt(e,_,,. ) — —attack(e,

Terjanian ’ tlg?? )

) = Happens(e

]9"" Terjanian ’ 19""
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A Model of FLT proving in terms
of the Levels of Argumentation

Third-level priority arguments - Ernst Kummer and the theory of ideals

The sequence of proof events continues in the third-level with further attempts for prov-
ing FLT. In 1847, Lamé’s proof (e,, .) failed, because it incorrectly assumes that com-

plex numbers can be factored into primes uniquely, a gap that was revealed by Liouville

(€,...0.) - Thus the counterargument generated by Liouville indicated the fault in

Lamé’s proving and, without adequate proof-events to support ¢, . . it was terminated.

EleLamé Ezwﬂwﬁs 1847 [attGCk(equmﬂe t]&}.r) —r eon C(E:Lamé)] ﬁ( 1847 {: tl < tg)

Nde, .t (Happens(e,, ..t,)— —attack(e, t_ )]

Lame’ "2 Liouvilie” "1847
— Terminates(e, . f.1,).

Kummer (e, ) proved the conjecture for regular prime numbers {e_mgmar) , alt-
hough not for regular primes (e, Ei_m_) . Therefore, we have

ActiveAt(e

mgusarvfsftmgs) ) — —attack(e, tis03) >
but

Kummer’ 1393

— Happens(e

Kumnwr 1893

Jde e, t lattack(e

Kummer’® ~ Kummer’® 189027 1893

( 1892 {: t < t]SQS) A [fl eﬁ’ummsr Z(HappeﬂS(EKummer’ t1893) —
—attack(e, t o)) — Terminates(e

Kummsr 1892

) — —conc(e

Kummr 189‘2 irregular )} M

irregular 7 fB 7 t]SQS ) .
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A Model of FLT proving in terms
of the Levels of Argumentation

Forth-level priority arguments - Connection with elliptic curves

In the forth-level priority, provings are started to connect with elliptic curves. The Tani-

yama conjecture (e, ) was proposed in 1955
I;"i!-'elt-z'a&t:zz&(emw3f4 t o) = Happens(e, . tlgE.E.) —
ﬁattacg{)(erg“ ]_955.) u Support(eTSH 1955)

but it was not proved until 1994, when Andrew Wiles (e

v..) accomplished a partial

proof of this conjecture. Thus we have
)N Initiates(e

Tsw?

Happens(e t)n

TS Ww?

Jytioss) ) —attack(e,
ft,), for tg, <t

Hi&ﬁ 1994

(tee < t,) — ActiveAt(e

'H ileg 7’
In 1984, Gerhard Frey (e me) pointed out a connection between the modularity the-
orem and Fermat’s equation, but FLT still remamed unsolved. Thereby, we have

Happens(e_ 1934)
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A Model of FLT proving in terms
of the Levels of Argumentation

Fifth-level priority arguments — Andrew Wiles

In the fifth-level priority arguments, the procedure and history in the Andrew Wile’s at-
tempts is represented. Wiles (e, ) discovered and extended an Euler system. He also

asked his colleague, Nick Katz, to help him in checking his reasoning for eventual faults.

Initiates(e Happens(e

s trons)
U support(e,

Wilea” f; t1993 )

- aftack(eﬁ s 191;3)

+ti00s)-
He presented his work m June 1993, but it soon became evident that there was an

incorrect critical point (e;,, ) in the proof. Wiles tried for almost a year to resolve this

Wiles
point, firstly by himself and then in collaboration with Richard Taylor (eTayjor) . but m

vain. Thus, his attempted is clipped on the time period from 1993 until 1994.
Clipp EJ( 10037 Eywites ilom) = 1 CWites e:;’s'ks 4 [H app ens(eﬂ’éka’ tl) M
(s < & < tion,) Nattack(ey,,,.t, )] N
Ei eQ?tQ(Happens( .-t,) — —attack(e,, t))], for tg. <t <t ..

In 1994, Wiles managed to overcome thls gap by combining Kolyvagin—Flach approach

[Elaboration(e,., .S

. o@mgiﬂ—mch)] and Iwasawa theory [Elaboration(e S

lh&ea Twasawa )]

and he submitted his final paper which was the last step mn proving FLT.
ActiveAt(e,,, . [, tioa
MElaboration(e,,

) = Happens(e

s hioas) — Tattack(e;

) ﬂ FElaboration(e,

Wiles” 1'994)

Kaiyuam Flach Wiles 7 Immm )
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A Model of FLT proving in terms
of the Levels of Argumentation

Higher-order priority arguments-Fermat’s Last Theorem

The proof—event managed to deal with all the attacks and we have
[ActiveAt(e

wites: Jos o) () Terminates(e, . f . to0,)] — Valid(e,, . t00,)

at the time tmm :

Thus, FLT is proved valid by Wiles, with the contribution of the other agents that
opened the way before him in this ages-long sequence of proof-events.
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End of the Proof-event

Thank you for your attention
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