
Smart Contracts and Formal Reasoning:
“Should we trust in code after all?”

Rules: Logic and Applications,
National Technical University of Athens
19/12/2018

Nikos Triantafyllou
University of the Aegean, i4m Lab

Blockchain Origins: A brief history

● Satoshi Nakamoto released the Bitcoin White Paper
outlining a purely peer to peer electronic cash/digital
asset transfer system

● First popular implementation of Blockchain
● Ethereum, Hyperledger, etc.

What is a blockchain?

● Distributed database that maintains a continuously growing
list of transactions secured from tampering and revision.

● Blocks contain a timestamp and a link to a previous block.

● The first implementation of a blockchain was a public ledger of
cryptocurrency transactions known as Bitcoin.

● This has led to the development of various decentralized
platforms, which allow the execution of tamper free programs,
called smart contracts, on top of such a blockchain.

What is a blockchain?

● Transactions
○ Blockchain is a historical archive of decisions and actions taken
○ Proof of history, provides provenance

● Immutable
○ once written to the chain, the blocks can be changed, but it is extremely difficult to do so
○ In DBA terms, Blockchains are Write and Read only

● Decentralized Peers
○ each NODE has a copy of the ledger

What is a blockchain?

● Consensus
○ Ensures that the next block in a blockchain is the one and only version of the truth
○ Keeps adversaries from derailing the system and successfully forking the chain

● Smart Contracts
○ Computer code
○ Provides business logic layer prior to block submission

Why are blockchains useful?

● tamper-proof, data
structure

● No central trusted authority exists
● Participating parties do not trust

each other

● Improved traceability
● Enhanced security

● protecting sensitive data,
blockchain has an opportunity to
really change how critical
information is shared by helping to
prevent fraud and unauthorized
activity.

● execution of smart
contracts

● Enforce the negotiation or
performance of a contract

● Allows for fair-exchange
(blockchain is the mediator)

● No direct interaction between
parties

● Open/verifiable business logic

In code we trust!

or
Understanding the need for Formal Methods

But Should we?

● Open business logic
● Immutability
● Verifiability

Testing strategies?

Developer:

● Unit tests

● Integration tests

QA:

● Functional tests

● Performance
tests

● Stress tests

● Failure tests

Security requires reasoning!

Informal Proofs
● Require deep thinking which promotes a

better understanding of the
system/algorithm

● Hard to get right!

High complexity
Errors (bugs) can be found in proofs as well Automated reasoning is required!

Formal Methods

● Precise specification of system/algorithm

● Tools to validate correctness
○ Computer handles complexity and

correctness

● Human intuition makes reasoning
possible

But Should we?

● Blind trust in critical systems is not a good idea
● Open/Verifiable code does not mean correct code
● Examples:

○ theDAO hack
○ Parity freeze
○ Parity’s multisig wallet

● Fixing (if possible) is very expensive (hard forks, updating
clients etc.)

Maybe yes!

● Raise the bar on security
● Automated reasoning in mathematical logic to

provide additional assurances
● Formal verification allows us to prove

conclusively that certain error states can
never occur.

Key point

● “The introduction of a blockchain doesn’t magically make
the system secure”

● Companies proposing to join or use blockchains should ensure
that they are designed and configured appropriately and
processes are supported by their own internal controls**

● Formal Methods can help!

**https://www.icas.com/technical-resources/the-interaction-between-blockchain-and-corporate-reporting

A case study:

RegTech Project verification

What is the deRegtech Project?

● Based on: Blockchain Technology, Algorithmic Financial
Contract Standards, and Document Engineering methods and
techniques.

● deRegTech project deploys a permissioned blockchain that
provides a distributed ledger for collecting, publishing and
storing information related to the creation and evolution of
financial contracts.

System Overview

When a contract is agreed between two counter-parties:

● jointly submit their report to the blockchain part of the deRegTech Service.
● smart contracts process these data, based on:

○ ACTUS standards and produce a DTD, in the form of a transaction and risk report.
○ follow a specific data model that implements a number of requirements made public recently

Regulatory Authority supervising these counter-parties can:
● obtain a list of all reports in the system (automatically)
● obtain for each such report all the related information (called state variables) for this contract.

The Regulatory Authority incorporates these data and functionality to its own financial/risk analysis
system(s) to assess the risks undertaken by the counter-parties.
.

Important Issues

1. Data validation
a. Is the information inserted in the system accurate?

2. Access control policies
a. Who gains access to which part of the available information

Goals

● How can we develop a formal framework for reasoning about smart contracts?
○ Reasoning about smart contract business logic.
○ Implementing business logic correctly.

● Minimum Safety Property:

“It is not possible to have a “confirmed” contract in deRegTech
system without the the approval of all involved parties first”.

Core Ontology for Blockchains

We can identify in a Blockchain system the following basic structures;

● Subject
○ The elements of the sort Subject, are used to denote the users of the blockchain.

● Object
○ Objects denote the entities on which the actions of the system are applied.

● Actions
○ The Action domain contains all the actions permitted in a blockchain system
○ The actions defined in our system are the following: createAccount, createContract,

updateContract, validateContract, getReport

● Transactions
○ The elements of the Transaction domain denote a desire or a request by the subject to execute

an action on the object of the transaction.

State Transition System and Blockchain

● The information contained within a Blockchain constantly changes!

● To address this, we define a new structure, called State, which represents the state
space of the blockchain system.

● A new constant is declared, init : → State, which denotes the initial state of the
system (i.e. it represents the genesis block of the blockchain).

● Three constructor functions are declared, which define how a new state of the system
can be derived by a previous one, sendTransaction, validateBlock and Tick.

State Transition System and Blockchain

● sendTransaction: State Transaction → State, denotes that a new transaction is sent to
the system.

● validateBlock: State Transaction Transaction → State, denotes that a set of received
transactions were considered as valid and their actions took effect altering the state of
the blockchain (i.e. represents the mining of a new block in the blockchain).

● Tick: State → State, denotes the passing of time and is required because the
information retrieved by a smart contract may change depending on this.

State Transition System and Blockchain

Two more functions are defined;

● pendingTransactions, which denotes the transactions submitted to the system but
are not yet verified, i.e. the transactions which are pending validation.

● objects, which given an element of the sort State returns a set of object sorted
elements and denotes the objects that belong to the blockchain at the given state of
the system.

A blockchain can thus be thought of as a State Transition system, where:

● each state consists: of the status of the core entities of the system, and
● each state transition function: takes as input a previous state of the system and a

transaction and gives as output a new state.

Reasoning with Algebraic Specifications

● Algebraic specification method is considered as one of the major formal methods.

● Systems are specified/designed based on algebraic modeling.

● The specifications/designs are tested/verified against requirements using algebraic
techniques.

● The behavior of systems can be nicely modeled by algebras.

● CafeOBJ is an algebraic specification language.

Formal verification of the desired goal

● Using the OTS/CafeOBJ approach, we successfully verified that the specification
satisfies the desired system property.

● The full specification of the proposed system and the proofs can be found at
CafeOBJ@NTUA [https://cafeobjntua.wordpress.com/].

Key Takeaways

● Blockchains build trust

● To trust code, testing is not enough

● Blockchain benefits come at a cost:

a. Design Error Resilience

● Formal Methods could be a feasible answer to addressing this problem

a. Correctness by Design Engineering

● Risk reporting using a blockchain is feasible

● May aid regulatory authorities and society at large in overshighting the global financial
system

● Petros Kavassalis, University of the Aegean, Information Management Lab (i4M Lab),
pkavassalis@atlantis-group.gr

● Harris Papadakis, University of the Aegean, Information Management Lab (i4M Lab),
adanar@atlantis-group.gr

● Petros Stefaneas, National Technical University of Athens, Logic and Formal Methods Group (λ-ForM),
petros@math.ntua.gr

● Katerina Ksystra, University of the Aegean, Information Management Lab (i4M Lab),
katerinaksystra@aegean.gr

● Nikolaos Triantafyllou, University of the Aegean, Information Management Lab (i4M Lab),
triantafyllou.ni@aegean.gr

Who is involved?

mailto:pkavassalis@atlantis-group.gr
mailto:adanar@atlantis-group.gr
mailto:petros@math.ntua.gr
mailto:katerinaksystra@gmail.com
mailto:triantafyllou.ni@gmail.com

Thank you for your attention!

Questions?

