Workshop Rules: Logic and Applications National Technical University of Athens

December 2018, Athens

Formalizing Air Traffic Control Regulations in PSOA RuleML

Theodoros Mitsikas^{1*}, Sofia Almpani¹, Petros Stefaneas², Panayiotis Frangos¹ and Iakovos Ouranos³

*mitsikas@central.ntua.gr

¹School of Electrical and Computer Engineering, NTUA,
 ²School of Applied Mathematical and Physical Sciences, NTUA
 ³Hellenic Civil Aviation Authority

Overview

- ATC Regulations/Separation minima/Wake Turbulence
- ICAO & FAA Regulations and Implementation
- Queries (Live Demo)
- Conclusions

Air Traffic Control

"The primary purpose of Air Traffic Control (ATC) is to prevent collisions between aircraft, organize and expedite the flow of air traffic, and provide information and other support for pilots."

- Collision prevention is realized by ensuring a minimum distance between aircraft, a concept also called *separation minimum*.
- Separation of aircraft serves an additional important role: the avoidance of *wake turbulence*.

Wake Turbulence

Source: https://www.flickr.com/photos/73886013@N06/35779717783

Source: https://imgur.com/WjBHC10

Wake Turbulence

Source: http://www.flickr.com/photos/44073224@N04/

Wake Turbulence Encounter

Source: NTSB

ICAO/FAA Regulations: Aircraft Classes

• ICAO:

Light - MTOM of 7000 kg or less.

Medium - MTOM of greater than 7000 kg, but less than 136000 kg.

Heavy - MTOM of 136000 kg or greater.

Super - A separate designation that currently only refers to the Airbus A380 (MTOM 575000 kg, ICAO designation A388).

• **RECAT:** 6 Categories, extra parameter: **wingspan**.

• FAA:

Small - Aircraft of 41000 pounds (≈19000 kg) or less MTOW.

Large - Aircraft of more than 41000 pounds MTOW, up to, but not including, 300000 pounds (≈140000 kg).

Heavy - Aircraft capable of takeoff weights of 300000 pounds or more.

Super - A separate designation that currently only refers to the Airbus A380 and the Antonov An-225.

B757 - Different separation standards are applied for the Boeing 757.

Example: ICAO Aircraft Classes in PSOA RuleML

Forall ?a (

```
:AircraftIcaoCategory(?a :Heavy) :-
```

Or(

```
And(?a#:Aircraft(:mtom->?w :specialCase->:No)
    math:greaterEq(?w 136000))
?a#:Aircraft(:specialCase->:A225)
)
```

ICAO/FAA Regulations: Separation Minima

ICAO separation standards (nautical miles)									
		Follower							
		Super	Heavy	Medium	Light				
Leader	Super	MRS	6	7	8				
	Heavy	MRS	4	5	6				
	Medium	MRS	MRS	MRS	5				
	Light	MRS	MRS	MRS	MRS				

MRS: Minimum Radar Separation.

Leader/Follower	Super	Heavy	B757	Large	Small			
Super	MRS	6	7	7	8			
Heavy	MRS	4	5	5	6			
B757	MRS	4	4	4	5			
Large	MRS	MRS	MRS	MRS	4			
Small	MRS	MRS	MRS	MRS	MRS			
MRS: minimum radar separation								

FAA wake separation standards (nautical miles, at the threshold)

Example: ICAO Separation Minima in PSOA RuleML

Forall ?x ?y (

:icaoSeparation(:leader->?x :follower->?y :miles->:Mrs):Or(

And(:AircraftIcaoCategory(?x :Medium) AircraftIcaoCategory(?y :Medium)) And(:AircraftIcaoCategory(?x :Medium) :AircraftIcaoCategory(?y :Heavy)) :AircraftIcaoCategory(?x :Light) :AircraftIcaoCategory(?y :Super)

Aircraft Database

- Source: FAA website (.xlsx file), converted to PSOA RuleML syntax by a Python script.
- More than 261 different aircraft types with variations, more than 440 aircraft entries in total.
- Variations → many duplicates for different versions of aircraft with differences in mtom/mtow, and wingspan.
- Quality of the dataset questionable for real-life application but very useful for this prototype.
 - How good is this dataset?

Aircraft Database

- :b738#:Aircraft(
 - :mtom->79015.79
 - :mtow->174200.0
 - :wingspan->117.83
 - :appSpeed->142.0
 - :specialCase->:No

- mtow, mtom for ICAO, FAA regulations.
- wingspan, mtow for RECAT (supported in the KB).
- appSpeed for future expansion towards Time-Based-Separation.
- specialCase for exceptions.

Queries on PSOATransRun

- Aircraft categorization:
 - Specific aircraft, all aircraft belonging to a category
- Aircraft separation:
 - Pairs of aircraft
 - All pairs that are separated by e.g. 3 miles:
 - Computationally Demanding, many queries fail on both XSB and SWI Prolog backends
 - Can be used for stress testing of rule engines
- Both tested back-ends (SWI Prolog and XSB Prolog) gave identical answers, while they failed at the same queries.
- SWI Prolog back-end was noticeably slower (~ 18 sec versus ~ 1 sec) at the computationally demanding queries (:recatSeparation(:leader→?x :follower->?y :miles→3))
- Other queries were answered without any visible difference in the elapsed time.

Conclusions

- A large KB consisting of rules —implementing ATC regulations— and aircraft facts —containing the required characteristics— was implemented.
- The resulting KB is capable of computing the separation minima mandated by ATC regulations, while using the self-contained database of aircraft facts.
- PSOA RuleML proved to be a suitable environment for the formalization of ATC Regulations.

Future Work

Formalization of ATC Regulations:

- Implement a larger subset of ATC regulations, e.g.:
 - Spatial reasoning/rules for airport layout (applicable to separation minima reduction), incident management.

Real-time framework:

- Use the KB with real radar data
 - Decision support tool
 - Real-time separation monitoring

Download the code: http://users.ntua.gr/mitsikas/ATC_KB/