17N SCHOOL
3 ' OF INFORMATICS
(2 AUTH
ARISTOTLE @ wen, Systems
UNIVERSITY OF

THESSALONIKI

SWRL2SPIN

Converting SWRL to SPIN

Nick Bassiliades
Intelligent Systems Lab, School of Informatics, Aristotle Univ. of Thessaloniki, Greece

What?

= SWRL2SPIN is a prototype tool built in SWI-Prolog
= Takes as input an OWL ontology with a (flat) SWRL rule base

= Converts SWRL rules into SPIN rules in the same ontology
= Rule conditions are analyzed
= SPIN rules are linked to ontology classes (OO flavor of SPIN)

= Condition elements (could be) re-ordered for optimized evaluation

Why?

= To prolong the life of existing SWRL rule-based ontology applications by converting to SPIN
= SWRL combines OWL with Horn Logic rules of the RuleML family

= Supported by Protégée, rule engines (Jess, Drools) and ontology reasoners (Pellet)
= Very popular choice for developing rule-based applications on top of OWL

= Difficult to become a W3C standard; reach out to industrial world

= SPIN has become a de-facto industry standard to represent SPARQL rules and constraints
= Builds on acceptance of SPARQL
= SHACL W3C standard is a legitimate successor of SPIN (strongly influenced)

How?
= Conversion at the RDF vocabulary level
= SWRL RDF representation — SPIN RDF vocabulary

= Also textual SPIN representation is generated
= This could be (has been) exploited for SWRL-to-SHACL-rules conversion

Student (?s) A attends(?s,?c) A isTaughtBy(?c,?f) -
knows (?s, ?f)

CONSTRUCT {
?s :knows ?f .
}
WHERE ({
?s rdf:type :Student .
?s :attends ?c .
?c :isTaughtBy ?f .

Correspondence between SWRL and SPIN constructs (I)

sp:Construct
sp:templates
sp:where

swrl:ClassAtom sp:subject <Arg>
swrl:.classPredicate <Class> sp:predicate rdf:type
swrl:argumentl <Arg> sp:object <Class>

Optionally, to avoid expensive RDFS/OWL reasoning sp:subject <Arg>

sp:path <rdf:type/rdfs:subClassOf*>
sp:object <Class>

swrl:IndividualPropertyAtom sp:subject <Arg1>

sp:predicate <Prop>
sp:object <Arg2>

swrl:propertyPredicate <Prop>
swrl:argumentl <Argl>
swrl:argument2 <Arg2>
swrl:DifferentindividualsAtom
swrl:propertyPredicate <Prop>
swrl:argumentl <Argl>
swrl:argument2 <Arg2>

sp:subject <Argl>
sp:predicate <Prop>
sp:object <Arg2>

Correspondence between SWRL and SPIN constructs (I1)

SWRL SPIN

swrl:SamelndividualAtom sp:subject <Arg1l>
swrl:argumentl <Argl> sp:predicate owl:sameAs
swrl:argument2 <Arg2> sp:object <Arg2>
swrl:DifferentindividualsAtom EJsE8e][c[e RS (e)iBe
swrl:argumentl <Arg1> sp:predicate owl.differentFrom
swrl:argument2 <Arg2> sp:object <Arg2>

swrl:BuiltinAtom

swrl:builtin <Fun> Customized translation
swrl:arguments <Args>

swrl:Variable <Var> sp:varName “<Var>"
<Value> """ <DataType> <Value> ™ <DataType>
<Individual> <Individual>

Embedding SPIN rules In

CONSTRUCT { # Q@QStudent
Classes ?this :knows ?z

}

WHERE {

?this :attends ?y

CONSTRUCT ({
?y :isTaughtBy %z

?xX :knows ?z

}

WHERE {
?x rdf:type :Student
?x :attends ?y CONSTRECT { # ECourse
?y :isTaughtBy ?z) ?X :knows ?z

} WHERE {

?x rdf:type :Student
?x :attends ?this
?this :isTaughtBy ?z

Optimizing SPIN rules

CONSTRUCT { # @QCourse CONSTRUCT { # @QCourse

?x :knows ?z ?X :knows ?z

})
WHERE { WHERE {

?x rdf:type :Student . ?this :isTaughtBy ?z .
?x :attends ?this . :::::::=>-=::::::r?x :attends ?this .
?this :isTaughtBy ?z . ?x rdf:type :Student

} }

Implementing SWRL builtins

= 41 built-ins supported (out of 78)
= Mostly: Comparisons, Mathematics, Strings and Lists

= Date, Time and Duration: only swrlb:date

= Conversion of builtins falls into 10 categories:
= Filter: binary filter, filter function, complex filter

= Bind: associative infix assign, binary infix assign, unary assign, assign function, complex
assign

= Other: magic property, complex expression

Built-in examples (1/2)

Binary filter
- greaterThan(?x,?y) — FILTER (?x > ?y)

Associative infix assign
- add(?y,?x1,7x2,...,2xn) — BIND ((((?x1 + ?x2) +...) + ?xn) AS ?y)

Filter function
- endsWith(?x,?y) — FILTER STRENDS(?x, ?y)

Assign function
= stringLength(?y,?x) — BIND (STRLEN(?x) AS ?y)

Built-in examples (2/2)

Complex assign
= integerDivide(?z,?x,?y) — BIND (spif:cast(?x / ?y, xsd:integer) AS ?z)

Complex filter
- stringEquallgnoreCase(?s1,?s2) — FILTER (LCASE(?s1) = LCASE(?s2))

Complex expression

= member(?e,?list) — ?list (rdf.rest)*/rdf first ?e .

Magic property

= tokenize(?x,?y,?z) — ?x spif:split (?y ?z) .

Evaluation
Rule translation time scalability

1000

100

—
=

et

Translation time (sec)

o —&8—Rule 1
) —8—Rule 2
0.01
100 1000 10000 100000
Number of rules

Rulel:
Student(?s) A attends(?s,?c) A isTaughtBy(?c,?f) — knows(?s,?f)
Rule 2:

Student (?x) A attends (?x,?y)A isTaughtBy (?y,?z) A firstName (?z,?f) A
lastName (?z,?1) A swrlb:stringConcat(?fn,?f, " ", ?1) -> knowsName (?x, ?£fn)

Evaluation
Flat SPIN rule vs. rule embedded In a class

Flat rule
CONSTRUCT {

100000 ?x :knows 2z .
10000
1000
100
1
Embedded rule
1 CONSTRUCT { # @Student

100000 1000000 ?this :knows ?z .

Number of instances }
WHERE {
?this :attends ?y .
?y :isTaughtBy ?z .

}
WHERE {

?x rdf:type :Student .
?x :attends ?y .
?y :isTaughtBy ?z .

Execution time (msec)
=

B Flat rule
m Embedded rule

Evaluation

Non-optimized SPIN rule vs. optimized rule

100000
o
e
= 10000
=i
o’
=¥
= 1000
E
2 100
ot
=
- 10
=
&=
1
100000 1000000
m Non-optimized rule Number of instances

® Optimized rule

non-optimized rule
CONSTRUCT { # @Course

?X :knows °?2z

}
WHERE {

?x rdf:type :Student .

?x :attends ?this .
?this :isTaughtBy °?z

optimized rule
CONSTRUCT { # QCourse

?xX :knows ?z .

}
WHERE {

?this :isTaughtBy °?z
?xX :attends ?this .

?x rdf:type :Student .

Conclusions

= SWRL2SPIN: A tool to transform SWRL to SPIN rules

= Based on RDF vocabulary translation AND text SPIN syntax

* Rules embedded in classes (instead of flat) and optimized (re-ordering atoms in the condition)
= Initial evaluation shows promising results

= Looking for large SWRL rule bases for proper evaluation

= Porting tool to translate SWRL to SHACL SPARQL rules

SWRL2SPIN Code: https://github.com/nbassili/SWRL2SPIN

SWRL2SPIN full Technical Report: https://arxiv.org/abs/1801.09061

Thank you!

https://github.com/nbassili/SWRL2SPIN
https://arxiv.org/abs/1801.09061

