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Summary

Take an open standard’s natural language 
specification and

Formally rewrite it 

Discussion about possible benefits

Example – RSS v2.0



Open Standards
“Open” term -> many definitions!

Dictionaries, National IT agencies, IDABC, WTO, 
Governments, OASIS, ANSI, etc., all provide different 
definitions.

Recurring themes:

Motivation

Built to encourage interoperability and help popularize new 
technologies

Development

developed by an open process

easy for anyone to participate in

Open to public input

Usage

easily accessible for all to read and use

no control or tie-in by any specific group or vendor



Ambiguity in Natural Languages

 Precision matters when it comes to protocols

 Context is often assumed.

 a medical appliance will assume a medical background which is usually not 
well defined.

 Also, during the development of the standard!

 We need to be able to carry a set of requirements during all phases 
of development

 All of these need to reflect our original intentions!

Shoes Must 
Be Worn

Dogs Must 
Be Carried





Formal Methods

 Techniques based on mathematics, used to:

 describe a system

 analyze its behavior 

 assist its design by properties’ verification carried 
out through rigorous and effective automated 
reasoning tools.

 Formal specifications are expressed in a 
language whose vocabulary, syntax and 
semantics are formally defined 

 Different that current specification methods



Formal Methods

 algebraic approach of formal specifications 

 specifies a system in terms of its operations and 
the relationships between those operations. 

 Types of data are formally specified along with 
operations on those data types. 

 The implementation details, such as the size of 
representations are quite abstract in nature.



Algebraic Specifications of 
Open Standards

 An Algebraic Formal Specification of an 
Open Standard;

Design a standard using this, or

Complement an existing natural language 
specification of a standard



Benefits

1. Less ambiguity issues: 

Even in a very careful standard’s natural language 
specification what someone reads does is not 
always what the designers had in mind. 

Applying a degree of formalism eliminates that 
problem

makes designers ask the right questions

improves the level of understanding

The N.L. specification of the open standard can 
not really be eliminated 

more natural for humans to start with a N.L. specification

its involvement can be minimized. 

it can be used to begin with (at the requirements part) 
and then use the formal version from there on. 



Benefits

2. Smaller specifications

F.S. are significantly more compact than 
the ones written in natural languages. 

 The specification for the format of ARPA 
Internet text messages is 40 pages. 

 A formal specification of that could be just a few 
pages. 

A well written specification of a small 
module can be applicable in other bigger 
systems as well.



3.Under circumstances (using an Algebraic 
Specification), we can:
– Verify the validity of the specification 

● Did we build the right system?

– Validate an implementation of the 
specification

● Did we build the system right?

Benefits



Test Case – RSS v2.0
 RSS - Really Simple Syndication

 Extensible Markup Language (XML)-based document format 

 Allows users to avoid visiting all of the websites they are 
interested in

 New content is automatically checked for and advertised as 
soon as it is available.

 RSS feeds can be read using software called an “RSS reader”, 
“feed reader”, or “aggregator”. Can be web-based, desktop-
based, or mobile-device-based.

 The RSS 2.0 specification describes how to create RSS 
documents.

 RSS is a dialect of XML. 

 All RSS files must conform to the XML 1.0 specification, as 
published on the World Wide Web Consortium (W3C) website. 



Sample RSS file
<rss version="2.0">

 <channel>

  <title>Liftoff News</title>

  <link>http://liftoff.msfc.nasa.gov/</link>

  <description>Liftoff to Space Exploration.</description>

  <language>en-us</language>

  <pubDate>Tue, 10 Jun 2003 04:00:00 GMT</pubDate>

  <docs>http://blogs.law.harvard.edu/tech/rss</docs>

  <generator>Weblog Editor 2.0</generator>

  <managingEditor>editor@example.com</managingEditor>

  <webMaster>webmaster@example.com</webMaster>

  <item>

   <title>Star City</title>

   <link>http://liftoff.msfc.nasa.gov/news/2003/news-starcity.asp</link>

    <description>How do Americans get ready to work with Russians aboard the International Space 
Station? They take a crash course in culture, language and protocol at Russia's <a href="http://
howe.iki.rssi.ru/GCTC/gctc_e.htm">Star City</a>.</description>

    <pubDate>Tue, 03 Jun 2003 09:39:21 GMT</pubDate>

    <guid>http://liftoff.msfc.nasa.gov/2003/06/03.html#item573</guid>

  </item>

 </channel>

</rss>



CafeOBJ

 An executable, algebraic specification language.

 Open source, provided free of charge under GNU GLP v2

 Used for writing formal (i.e. mathematical) specifications 
of models for wide varieties of software and systems, and 
verifying properties of them. 

 Implements equational logic by rewriting and can be used 
as a powerful interactive theorem proving system. 

 Specifiers can write proof scores also in CafeOBJ and 
doing proofs by executing the proof scores.



XML structures
 RSS is an XML file

 As every XML file, RSS has to follow some syntax rules (“well 
formed”) and conform to a specific document type (set of rules 
that define legal elements and attributes) – a DTD or a XML 
Schema

 XML2OBJ

 CafeOBJ framework for describing XML structure

 A module that gets imported into the specification providing XML 
support.

 Adds methods that parse a XML tree structure from a file and can

 Find a specific element (by tag and/or by parent) and return it (or its 
content)

 Check whether an element has attributes and return both the names 
of those attributes and their assorted values



RSS formalization
 Why?

XML is not enough

A DTD can’t validate data – XML Schema can

Neither DTD nor XML Schema can do complex 
operations:

 Compare values from 2 elements

 Reuse a constraint for every element of the same type

 etc..

RSS’ spec:

Sometimes messy

Unclear

Verbose



Reducing verbosity
 Most RSS elements are similar in nature:

 Title, Link, Description, Copyright, ManagingEditor, …

 All share a very similar specification

 What changes:

 XML Name

 Name of the operators

 Instead of writing so many similar modules

 We write one module with this generic structure that serves as 
a building block

 All similar modules just reuse that structure with some term-
renaming

 If needed, we add everything else (XML attributes, 
requirements, properties, constrictions)



mod* BUILDINGBLOCK {

pr(XML)

op getxmlcontent : ElemNdList -> String .

op getattributes : ElemNdList -> String .

op XMLTitlePrefix : -> XMLName .

eq XMLTitlePrefix = "" .

vars X X1 : XMLName . 

vars A A1 : AttNdList .

var S : String .

vars EL EL1 : ElemNdList .

ceq getxmlcontent( < X A >[ tx(S) ] ) = S if (X = XMLTitlePrefix) and (A = noAtt ) .

ceq getxmlcontent( ( < X A >[ tx(S) ] ) @ EL1) = S if (X = XMLTitlePrefix) and (A = noAtt ) . 

ceq getxmlcontent( ( < X A >[ tx(S) ] ) @ EL) = getxmlcontent(EL) if not((X = XMLTitlePrefix) and (A = noAtt)) .

ceq getxmlcontent( < X A >[ EL ]) = getxmlcontent(EL) if not((X == XMLTitlePrefix) and (A = noAtt)) .

ceq getxmlcontent( < X A >[ ( < X1 A1 >[ EL ] ) ] ) = getxmlcontent( < X1 A1 >[ EL ] ) if not((X = XMLTitlePrefix) 
and (A = noAtt )) . }

mod! TITLE {

protecting(BUILDINGBLOCK * {op getxmlcontent -> gettitle, op XMLTitlePrefix -> TitleXMLPrefix})

eq TitleXMLPrefix = "Title" .

}

mod! LINK {

protecting(BUILDINGBLOCK * {op getxmlcontent -> getlink, op XMLTitlePrefix -> LinkXMLPrefix})

eq LinkXMLPrefix = "Link" .

}



Adding restrictions
 The Language element has a list of allowed values. 

mod! LANGUAGE {

protecting(BUILDINGBLOCK * {op getxmlcontent -> getlanguage, op 
XMLTitlePrefix -> LanguageXMLPrefix})

eq LanguageXMLPrefix = "Language" .

op properlanguage? : String -> Bool

var L : String .

eq properlanguage?(L) = 

     if

    L = "en-us"

    or L = "el-gr“

    or …

  then true 

  else false

fi .

}



Channel

 Main module that imports everything else

 properchannel? operator checks if a given 
channel is valid (and also describes the protocol’s 
reqs):

1. Root element is Channel – no attributes

2. Title, Link & Description elements under channel – no 
attributes

3. If there is a Language element -> no attributes and the 
content is within the list of accepted codes (e.g. “en-
us”)



Channel
4. TTL

 The maximum number of minutes to cache the data before an 
aggregator requests it again

 Indicates how long after the publication date can a feed stay alive 
- easy to specify if needed 

 PubDate + TTL <= Now()

 ??

5. PubDate & LastBuildDate

 If present → no attributes

 Date is proper

6. Cloud

 XML element with 5 required attributes

 If present → all 5 attributes must be present 



Channel
7. SkipHours & SkipDays

 Contains up to 24 <hour> sub elements containing a time when 
aggregators may not read the channel.

 Properchannel? Compares the current hour with those sub elements. 

 SkipDays is similar

8. TextInput

 “The textInput element defines a form to submit a text query to the 
feed's publisher over the Common Gateway Interface (CGI) (optional).”

 The RSS specification actively discourages publishers from using the 
textInput element, calling its purpose "something of a mystery" and 
stating that "most aggregators ignore it." Fewer than one percent of 
surveyed RSS feeds included the element. 

 For this reason, publishers should not expect it to be supported in most 
aggregators.



Channel
9. Image

 Specifies an image that can be displayed with the channel

 Contains 3 required & 3 optional sub elements.

●

●

 Properchannel? uses properimage? operator

 Title and Link elements should (?) have the same value as the 
channel’s title & link.

eq properwidth?(W) = if ((W >= 0) and (W <= 144)) 
then true

else false
fi .

0≤height≤400( pixels)

0≤width≤144 ( pixels)



Channel

10. Item

 Represents a “story”

 May contain any number of items.

 All sub elements are optional, but a title or a 
description must be present.

 Title and description’s specifications are not declared 
again

 Sub elements of item have similar properties.

 properitem? takes care of all requirements for the 
Item element



eq properchannel?(< X A > [ EL ]) =
if ( (X = ChannelXMLPrefix) and (A = noAtt) )
and ( xmlnameexists?(TitleXMLPrefix, EL) and (getxmlatt(TitleXMLPrefix, EL) = noAtt) and 

(getparent(TitleXMLPrefix, < X A > [ EL ]) = ChannelXMLPrefix) )
and ( xmlnameexists?(LinkXMLPrefix, EL) and (getparent(LinkXMLPrefix, < X A > [ EL ]) = 

ChannelXMLPrefix) and (getxmlatt(LinkXMLPrefix, EL) = noAtt) )
and ( xmlnameexists?(DescriptionXMLPrefix, EL) and (getparent(DescriptionXMLPrefix, < X A > [ EL ]) = 

ChannelXMLPrefix) and (getxmlatt(DescriptionXMLPrefix, EL) = noAtt) )
and (xmlnameexists?(LanguageXMLPrefix, EL) implies ((getxmlatt(LanguageXMLPrefix, EL) = noAtt) and 

properlanguage?(getlanguage(EL))) )
…

and ((xmlnameexists?(PubDateXMLPrefix, EL) and (getparent(PubDateXMLPrefix, < X A > [ EL ]) = 
ChannelXMLPrefix)) implies (getxmlatt(PubDateXMLPrefix, EL) = noAtt and properdate?(getpubdate(EL))) )

and ((xmlnameexists?(TTLXMLPrefix, EL)) implies (getxmlatt(TTLXMLPrefix, EL) = noAtt))
and (xmlnameexists?(CloudXMLPrefix, EL) implies propercloud?(returnxmlnode(CloudXMLPrefix, EL)) )
and (xmlnameexists?(SkipHoursXMLPrefix, EL) implies ((getxmlatt(SkipHoursXMLPrefix, EL) == noAtt) and 

validhour(returnxmlnode(SkipHoursXMLPrefix, EL), hour(today))))
and (xmlnameexists?(SkipDaysXMLPrefix, EL) implies ( (getxmlatt(SkipDaysXMLPrefix, EL) == noAtt) and 

validday(returnxmlnode(SkipDaysXMLPrefix, EL), dayT(today))))
and (xmlnameexists?(TextInputXMLPrefix, EL) implies propertextinput?(returnxmlnode(TextInputXMLPrefix, 

EL)))
and (xmlnameexists?(ItemXMLPrefix, EL) implies properitem?(returnxmlnode(ItemXMLPrefix, EL)))
and (xmlnameexists?(ImageXMLPrefix, EL) implies properimage?(returnxmlnode(ImageXMLPrefix, EL)))
and (xmlnameexists?(LastBuildDateXMLPrefix, EL) implies ( (getxmlatt(LastBuildDateXMLPrefix, EL) == noAtt) 

and properdate?(getlastbuilddate(EL))) )
then true
else false
fi .



Providing a sample channel
open CHANNEL .

op samplechannel : -> ElemNdList .

eq samplechannel = < "Channel" noAtt > [

( < "Title" noAtt > [ txt("Title goes here") ]) @

 ( < "Link" noAtt > [ txt("URL") ]) @

( < "Description" noAtt > [ txt("This is the description") ]) @

 ( < "Category" ("Domain" @= "Syndic8") > [ txt("1765") ]) @

 ( < "Language" noAtt > [ txt("el-gr") ]) @

 ( < "Copyright" noAtt > [ txt("Copyright 2002, Spartanburg Herald-Journal") ]) @

 ( < "PubDate" noAtt > [ dat(date("Thu", 2013, 4, 24, 17, 22, 0, "GMT")) ]) @

 ( < "Cloud" (("domain" @= "rpc.sys.com") @ ("port" @= "80") @ ("path" @= "/RPC2") @ ("registerprocedure" @= "pingMe") @ 
("protocol" @= "soap")) > [ txt("") ] ) @

 ( < "Image" noAtt > [

  ( < "Title" noAtt > [ txt("Title of the image here") ]) @

  ( < "Link" noAtt > [ txt("Image redirects here") ]) @

  ( < "URL" noAtt > [ txt("URL of the image") ]) @

  ( < "Width" noAtt > [ nat(55) ]) @

  ( < "Height" noAtt > [ nat(400) ])  ] ) @

 ( < "TTL" noAtt > [nat(60) ]) @

 ( < "Item" noAtt > [

  ( < "Title" noAtt > [ txt("Title of the 1st item here") ]) @

  ( < "Link" noAtt > [ txt("Link of the 1st item here") ]) @ ) @

 ( < "SkipHours" noAtt > [

  ( < "Hour" noAtt > [ nat(11) ]) @

  ( < "Hour" noAtt > [ nat(12) ]) ] ) @

 ( < "SkipDays" noAtt > [

  ( < "Day" noAtt > [ txt("Sunday") ]) @

  ( < "Day" noAtt > [ txt("Tuesday") ]) ] )  ] .

close



Reductions

-- opening module CHANNEL.. done.

%CHANNEL> %CHANNEL> %CHANNEL> _

%CHANNEL> *

-- reduce in %CHANNEL : (properchannel?(samplechannel)):Bool

(true):Bool

(0.000 sec for parse, 3909 rewrites(4.150 sec), 30349 matches)

 Suppose we introduce an error

 (e.g. replace the attributes of “Cloud” with noAtt)

-- opening module CHANNEL.. done.

%CHANNEL> %CHANNEL> %CHANNEL> _

%CHANNEL> *

-- reduce in %CHANNEL : (properchannel?(samplechannel)):Bool

(false):Bool

(0.000 sec for parse, 3854 rewrites(4.140 sec), 30074 matches)

 We can turn on more detail in the output to see exactly which condition failed to evaluate properly



How do our claims hold up?
 The specification we've created can also work as an 

RSS/XML DTD as we can check a sample RSS file 
(converted via XML2OBJ) against the specification. 

 Verbosity

 Specification: 650 (820 lines with comments) in 44 modules

 lots of empty lines 

 The original specification: bigger in size; 

 some elements link to external pages that provide the 
specifications

 Date and Time Specifications, as they appear in RFC 822, are 40 
pages big. 



How do our claims hold up?

 Clarity:

 Unclear elements (TTL, title and link sub-elements of the 
image element). 

 We can only specify what we think that the developers 
originally intended, but..

 writing a formal specification makes us investigate in depth 
each element:

 Asking the right questions gives a clear view of intentions and 
helps avoid confusions as to how is the standard supposed to 
work

 Requirements amalgamation:

 Each requirement for the RSS file can be seen in the 
properchannel? operator. We can easily isolate any 
requirements we want in that operator and see how a change 
affects the big picture, or not.  



Discussion
No other formalizations of open standards 

available. Why?
RSS seems a suitable candidate. What about others?

Perhaps a different specification approach / formal method should 
be used.

Z, VDM, etc.. 

Many formal method tools.

Slow learning curve of F.M.

Changing industrial habits is not happening overnight

Different kind of training is required

Positive learning experiences while teaching formal 
specification concepts

Is it worth it?



Thank you!
Questions?
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