
Formalizing a Web
Standard’s requirements:
RSS v2.0
Rules: Logic and Applications (Dec. 19, 2018)

Konstantinos Barlas

University of West Attica

Summary

Take an open standard’s natural language
specification and

Formally rewrite it

Discussion about possible benefits

Example – RSS v2.0

Open Standards
“Open” term -> many definitions!

Dictionaries, National IT agencies, IDABC, WTO,
Governments, OASIS, ANSI, etc., all provide different
definitions.

Recurring themes:

Motivation

Built to encourage interoperability and help popularize new
technologies

Development

developed by an open process

easy for anyone to participate in

Open to public input

Usage

easily accessible for all to read and use

no control or tie-in by any specific group or vendor

Ambiguity in Natural Languages

 Precision matters when it comes to protocols

 Context is often assumed.

 a medical appliance will assume a medical background which is usually not
well defined.

 Also, during the development of the standard!

 We need to be able to carry a set of requirements during all phases
of development

 All of these need to reflect our original intentions!

Shoes Must
Be Worn

Dogs Must
Be Carried

Formal Methods

 Techniques based on mathematics, used to:

 describe a system

 analyze its behavior

 assist its design by properties’ verification carried
out through rigorous and effective automated
reasoning tools.

 Formal specifications are expressed in a
language whose vocabulary, syntax and
semantics are formally defined

 Different that current specification methods

Formal Methods

 algebraic approach of formal specifications

 specifies a system in terms of its operations and
the relationships between those operations.

 Types of data are formally specified along with
operations on those data types.

 The implementation details, such as the size of
representations are quite abstract in nature.

Algebraic Specifications of
Open Standards

 An Algebraic Formal Specification of an
Open Standard;

Design a standard using this, or

Complement an existing natural language
specification of a standard

Benefits

1. Less ambiguity issues:

Even in a very careful standard’s natural language
specification what someone reads does is not
always what the designers had in mind.

Applying a degree of formalism eliminates that
problem

makes designers ask the right questions

improves the level of understanding

The N.L. specification of the open standard can
not really be eliminated

more natural for humans to start with a N.L. specification

its involvement can be minimized.

it can be used to begin with (at the requirements part)
and then use the formal version from there on.

Benefits

2. Smaller specifications

F.S. are significantly more compact than
the ones written in natural languages.

 The specification for the format of ARPA
Internet text messages is 40 pages.

 A formal specification of that could be just a few
pages.

A well written specification of a small
module can be applicable in other bigger
systems as well.

3.Under circumstances (using an Algebraic
Specification), we can:
– Verify the validity of the specification

● Did we build the right system?

– Validate an implementation of the
specification

● Did we build the system right?

Benefits

Test Case – RSS v2.0
 RSS - Really Simple Syndication

 Extensible Markup Language (XML)-based document format

 Allows users to avoid visiting all of the websites they are
interested in

 New content is automatically checked for and advertised as
soon as it is available.

 RSS feeds can be read using software called an “RSS reader”,
“feed reader”, or “aggregator”. Can be web-based, desktop-
based, or mobile-device-based.

 The RSS 2.0 specification describes how to create RSS
documents.

 RSS is a dialect of XML.

 All RSS files must conform to the XML 1.0 specification, as
published on the World Wide Web Consortium (W3C) website.

Sample RSS file
<rss version="2.0">

 <channel>

 <title>Liftoff News</title>

 <link>http://liftoff.msfc.nasa.gov/</link>

 <description>Liftoff to Space Exploration.</description>

 <language>en-us</language>

 <pubDate>Tue, 10 Jun 2003 04:00:00 GMT</pubDate>

 <docs>http://blogs.law.harvard.edu/tech/rss</docs>

 <generator>Weblog Editor 2.0</generator>

 <managingEditor>editor@example.com</managingEditor>

 <webMaster>webmaster@example.com</webMaster>

 <item>

 <title>Star City</title>

 <link>http://liftoff.msfc.nasa.gov/news/2003/news-starcity.asp</link>

 <description>How do Americans get ready to work with Russians aboard the International Space
Station? They take a crash course in culture, language and protocol at Russia's <a href="http://
howe.iki.rssi.ru/GCTC/gctc_e.htm">Star City.</description>

 <pubDate>Tue, 03 Jun 2003 09:39:21 GMT</pubDate>

 <guid>http://liftoff.msfc.nasa.gov/2003/06/03.html#item573</guid>

 </item>

 </channel>

</rss>

CafeOBJ

 An executable, algebraic specification language.

 Open source, provided free of charge under GNU GLP v2

 Used for writing formal (i.e. mathematical) specifications
of models for wide varieties of software and systems, and
verifying properties of them.

 Implements equational logic by rewriting and can be used
as a powerful interactive theorem proving system.

 Specifiers can write proof scores also in CafeOBJ and
doing proofs by executing the proof scores.

XML structures
 RSS is an XML file

 As every XML file, RSS has to follow some syntax rules (“well
formed”) and conform to a specific document type (set of rules
that define legal elements and attributes) – a DTD or a XML
Schema

 XML2OBJ

 CafeOBJ framework for describing XML structure

 A module that gets imported into the specification providing XML
support.

 Adds methods that parse a XML tree structure from a file and can

 Find a specific element (by tag and/or by parent) and return it (or its
content)

 Check whether an element has attributes and return both the names
of those attributes and their assorted values

RSS formalization
 Why?

XML is not enough

A DTD can’t validate data – XML Schema can

Neither DTD nor XML Schema can do complex
operations:

 Compare values from 2 elements

 Reuse a constraint for every element of the same type

 etc..

RSS’ spec:

Sometimes messy

Unclear

Verbose

Reducing verbosity
 Most RSS elements are similar in nature:

 Title, Link, Description, Copyright, ManagingEditor, …

 All share a very similar specification

 What changes:

 XML Name

 Name of the operators

 Instead of writing so many similar modules

 We write one module with this generic structure that serves as
a building block

 All similar modules just reuse that structure with some term-
renaming

 If needed, we add everything else (XML attributes,
requirements, properties, constrictions)

mod* BUILDINGBLOCK {

pr(XML)

op getxmlcontent : ElemNdList -> String .

op getattributes : ElemNdList -> String .

op XMLTitlePrefix : -> XMLName .

eq XMLTitlePrefix = "" .

vars X X1 : XMLName .

vars A A1 : AttNdList .

var S : String .

vars EL EL1 : ElemNdList .

ceq getxmlcontent(< X A >[tx(S)]) = S if (X = XMLTitlePrefix) and (A = noAtt) .

ceq getxmlcontent((< X A >[tx(S)]) @ EL1) = S if (X = XMLTitlePrefix) and (A = noAtt) .

ceq getxmlcontent((< X A >[tx(S)]) @ EL) = getxmlcontent(EL) if not((X = XMLTitlePrefix) and (A = noAtt)) .

ceq getxmlcontent(< X A >[EL]) = getxmlcontent(EL) if not((X == XMLTitlePrefix) and (A = noAtt)) .

ceq getxmlcontent(< X A >[(< X1 A1 >[EL])]) = getxmlcontent(< X1 A1 >[EL]) if not((X = XMLTitlePrefix)
and (A = noAtt)) . }

mod! TITLE {

protecting(BUILDINGBLOCK * {op getxmlcontent -> gettitle, op XMLTitlePrefix -> TitleXMLPrefix})

eq TitleXMLPrefix = "Title" .

}

mod! LINK {

protecting(BUILDINGBLOCK * {op getxmlcontent -> getlink, op XMLTitlePrefix -> LinkXMLPrefix})

eq LinkXMLPrefix = "Link" .

}

Adding restrictions
 The Language element has a list of allowed values.

mod! LANGUAGE {

protecting(BUILDINGBLOCK * {op getxmlcontent -> getlanguage, op
XMLTitlePrefix -> LanguageXMLPrefix})

eq LanguageXMLPrefix = "Language" .

op properlanguage? : String -> Bool

var L : String .

eq properlanguage?(L) =

 if

 L = "en-us"

 or L = "el-gr“

 or …

 then true

 else false

fi .

}

Channel

 Main module that imports everything else

 properchannel? operator checks if a given
channel is valid (and also describes the protocol’s
reqs):

1. Root element is Channel – no attributes

2. Title, Link & Description elements under channel – no
attributes

3. If there is a Language element -> no attributes and the
content is within the list of accepted codes (e.g. “en-
us”)

Channel
4. TTL

 The maximum number of minutes to cache the data before an
aggregator requests it again

 Indicates how long after the publication date can a feed stay alive
- easy to specify if needed

 PubDate + TTL <= Now()

 ??

5. PubDate & LastBuildDate

 If present → no attributes

 Date is proper

6. Cloud

 XML element with 5 required attributes

 If present → all 5 attributes must be present

Channel
7. SkipHours & SkipDays

 Contains up to 24 <hour> sub elements containing a time when
aggregators may not read the channel.

 Properchannel? Compares the current hour with those sub elements.

 SkipDays is similar

8. TextInput

 “The textInput element defines a form to submit a text query to the
feed's publisher over the Common Gateway Interface (CGI) (optional).”

 The RSS specification actively discourages publishers from using the
textInput element, calling its purpose "something of a mystery" and
stating that "most aggregators ignore it." Fewer than one percent of
surveyed RSS feeds included the element.

 For this reason, publishers should not expect it to be supported in most
aggregators.

Channel
9. Image

 Specifies an image that can be displayed with the channel

 Contains 3 required & 3 optional sub elements.

●

●

 Properchannel? uses properimage? operator

 Title and Link elements should (?) have the same value as the
channel’s title & link.

eq properwidth?(W) = if ((W >= 0) and (W <= 144))
then true

else false
fi .

0≤height≤400(pixels)

0≤width≤144 (pixels)

Channel

10. Item

 Represents a “story”

 May contain any number of items.

 All sub elements are optional, but a title or a
description must be present.

 Title and description’s specifications are not declared
again

 Sub elements of item have similar properties.

 properitem? takes care of all requirements for the
Item element

eq properchannel?(< X A > [EL]) =
if ((X = ChannelXMLPrefix) and (A = noAtt))
and (xmlnameexists?(TitleXMLPrefix, EL) and (getxmlatt(TitleXMLPrefix, EL) = noAtt) and

(getparent(TitleXMLPrefix, < X A > [EL]) = ChannelXMLPrefix))
and (xmlnameexists?(LinkXMLPrefix, EL) and (getparent(LinkXMLPrefix, < X A > [EL]) =

ChannelXMLPrefix) and (getxmlatt(LinkXMLPrefix, EL) = noAtt))
and (xmlnameexists?(DescriptionXMLPrefix, EL) and (getparent(DescriptionXMLPrefix, < X A > [EL]) =

ChannelXMLPrefix) and (getxmlatt(DescriptionXMLPrefix, EL) = noAtt))
and (xmlnameexists?(LanguageXMLPrefix, EL) implies ((getxmlatt(LanguageXMLPrefix, EL) = noAtt) and

properlanguage?(getlanguage(EL))))
…

and ((xmlnameexists?(PubDateXMLPrefix, EL) and (getparent(PubDateXMLPrefix, < X A > [EL]) =
ChannelXMLPrefix)) implies (getxmlatt(PubDateXMLPrefix, EL) = noAtt and properdate?(getpubdate(EL))))

and ((xmlnameexists?(TTLXMLPrefix, EL)) implies (getxmlatt(TTLXMLPrefix, EL) = noAtt))
and (xmlnameexists?(CloudXMLPrefix, EL) implies propercloud?(returnxmlnode(CloudXMLPrefix, EL)))
and (xmlnameexists?(SkipHoursXMLPrefix, EL) implies ((getxmlatt(SkipHoursXMLPrefix, EL) == noAtt) and

validhour(returnxmlnode(SkipHoursXMLPrefix, EL), hour(today))))
and (xmlnameexists?(SkipDaysXMLPrefix, EL) implies ((getxmlatt(SkipDaysXMLPrefix, EL) == noAtt) and

validday(returnxmlnode(SkipDaysXMLPrefix, EL), dayT(today))))
and (xmlnameexists?(TextInputXMLPrefix, EL) implies propertextinput?(returnxmlnode(TextInputXMLPrefix,

EL)))
and (xmlnameexists?(ItemXMLPrefix, EL) implies properitem?(returnxmlnode(ItemXMLPrefix, EL)))
and (xmlnameexists?(ImageXMLPrefix, EL) implies properimage?(returnxmlnode(ImageXMLPrefix, EL)))
and (xmlnameexists?(LastBuildDateXMLPrefix, EL) implies ((getxmlatt(LastBuildDateXMLPrefix, EL) == noAtt)

and properdate?(getlastbuilddate(EL))))
then true
else false
fi .

Providing a sample channel
open CHANNEL .

op samplechannel : -> ElemNdList .

eq samplechannel = < "Channel" noAtt > [

(< "Title" noAtt > [txt("Title goes here")]) @

 (< "Link" noAtt > [txt("URL")]) @

(< "Description" noAtt > [txt("This is the description")]) @

 (< "Category" ("Domain" @= "Syndic8") > [txt("1765")]) @

 (< "Language" noAtt > [txt("el-gr")]) @

 (< "Copyright" noAtt > [txt("Copyright 2002, Spartanburg Herald-Journal")]) @

 (< "PubDate" noAtt > [dat(date("Thu", 2013, 4, 24, 17, 22, 0, "GMT"))]) @

 (< "Cloud" (("domain" @= "rpc.sys.com") @ ("port" @= "80") @ ("path" @= "/RPC2") @ ("registerprocedure" @= "pingMe") @
("protocol" @= "soap")) > [txt("")]) @

 (< "Image" noAtt > [

 (< "Title" noAtt > [txt("Title of the image here")]) @

 (< "Link" noAtt > [txt("Image redirects here")]) @

 (< "URL" noAtt > [txt("URL of the image")]) @

 (< "Width" noAtt > [nat(55)]) @

 (< "Height" noAtt > [nat(400)])]) @

 (< "TTL" noAtt > [nat(60)]) @

 (< "Item" noAtt > [

 (< "Title" noAtt > [txt("Title of the 1st item here")]) @

 (< "Link" noAtt > [txt("Link of the 1st item here")]) @) @

 (< "SkipHours" noAtt > [

 (< "Hour" noAtt > [nat(11)]) @

 (< "Hour" noAtt > [nat(12)])]) @

 (< "SkipDays" noAtt > [

 (< "Day" noAtt > [txt("Sunday")]) @

 (< "Day" noAtt > [txt("Tuesday")])])] .

close

Reductions

-- opening module CHANNEL.. done.

%CHANNEL> %CHANNEL> %CHANNEL> _

%CHANNEL> *

-- reduce in %CHANNEL : (properchannel?(samplechannel)):Bool

(true):Bool

(0.000 sec for parse, 3909 rewrites(4.150 sec), 30349 matches)

 Suppose we introduce an error

 (e.g. replace the attributes of “Cloud” with noAtt)

-- opening module CHANNEL.. done.

%CHANNEL> %CHANNEL> %CHANNEL> _

%CHANNEL> *

-- reduce in %CHANNEL : (properchannel?(samplechannel)):Bool

(false):Bool

(0.000 sec for parse, 3854 rewrites(4.140 sec), 30074 matches)

 We can turn on more detail in the output to see exactly which condition failed to evaluate properly

How do our claims hold up?
 The specification we've created can also work as an

RSS/XML DTD as we can check a sample RSS file
(converted via XML2OBJ) against the specification.

 Verbosity

 Specification: 650 (820 lines with comments) in 44 modules

 lots of empty lines

 The original specification: bigger in size;

 some elements link to external pages that provide the
specifications

 Date and Time Specifications, as they appear in RFC 822, are 40
pages big.

How do our claims hold up?

 Clarity:

 Unclear elements (TTL, title and link sub-elements of the
image element).

 We can only specify what we think that the developers
originally intended, but..

 writing a formal specification makes us investigate in depth
each element:

 Asking the right questions gives a clear view of intentions and
helps avoid confusions as to how is the standard supposed to
work

 Requirements amalgamation:

 Each requirement for the RSS file can be seen in the
properchannel? operator. We can easily isolate any
requirements we want in that operator and see how a change
affects the big picture, or not.

Discussion
No other formalizations of open standards

available. Why?
RSS seems a suitable candidate. What about others?

Perhaps a different specification approach / formal method should
be used.

Z, VDM, etc..

Many formal method tools.

Slow learning curve of F.M.

Changing industrial habits is not happening overnight

Different kind of training is required

Positive learning experiences while teaching formal
specification concepts

Is it worth it?

Thank you!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

